Tutorial/Checklist


Boeing 737 — From Cold and Dark to Ready for Taxiing

http://www.youtube.com/watch?v=vEaVaXJsykY

Crédito/Fonte:
http://www.portalbrasil.net/aviacao_comparativo.htm

***************************

A  V  I  A  Ç  à O
COMPARATIVOS ENTRE AERONAVES DE PASSAGEIROS

                                                                                                                                                                                                                                                                                                             (Por data de lançamento)

Aeronaves (1) Passageiros
e Turbinas
Tripulantes Início de
Produção
Consumo (litros/hora) Autonomia Valor da aeronave
(US$ milhões)
Valor do leasing
(US$ mil, por mês)
Tupolev TU-104 72 – 2A 06 02/56 5.100 Curta 2,280 20.0
De Havilland Comet 2 46 – 4A 06 06/56 5.500 Média 3,702 33.6
De Havilland Comet 4 82 – 4A 08 10/57 7.000 Longa 6,600 60,0
Boeing 707-120 110 – 4A 08 10/58 7.300 Longa 6.881 62.0
Fokker F-27 44 – 2A 04 12/58 720 (Th) Curta 2,580 23.0
Ilyushin IL-18 75 – 4A 08 04/59 2.700 (Th) Curta 2,700 24.0
Vickers Vanguard 92 – 4A 04 04/59 1.300 (Th) Média 4,100 37.0
Sud-Est Caravelle I 79 – 2T 06 04/59 3.350 Curta 3,300 30.0
Douglas DC-8-10 124 – 4A 09 08/59 7.300 Média 6,500 59.0
Boeing 707-320 144 – 4A 09 10/59 7.500 Longa 8,088 73.0
Antonov AN-10 85 – 4A 04 12/59 2.200 (Th) Curta 6,500 59.0
Convair 880 88 – 4A 06 12/59 4.700 Média 6,696 60.0
Douglas DC-8-30 124 – 4A 09 02/60 7.200 Longa 7,644 69.0
De Havilland Comet 4B 71 – 4A 06 04/60 4.500 Média 5,853 53.0
Boeing 720 106 – 4A 07 07/60 5.650 Curta 7,611 69.0
De Havilland Comet 4C 79 – 4A 08 09/60 5.000 Longa 7,235 65.0
Sud Aviation Caravelle III 84 – 2T 06 09/60 3.300 Curta 3,851 35.0
Convair 880M 88 – 4A 06 07/61 4.800 Longa 7,065 64.0
Convair 990 96 – 4A 07 12/61 5.000 Longa 7,831 71.0
Boeing 727-100 105 – 3T 08 02/64 4.150 Curta 5,500 50,0
BAe Trident 1C 73 – 3T 06 04/64 4.000 Média 6,136 55.0
BAe 1.11 Series 200 (One Eleven) 65 – 2T 05 04/65 2.800 Curta 5,320 48.0
Sud-Est Caravelle 10B 89 – 2T 06 07/65 3.350 Curta 5,264 47.0
Vickers Super VC-10 139 – 2T 09 08/65 8.300 Muito Longa 11,940 108.0
Douglas DC-9-10 86 – 2T 06 12/65 3.200 Curta 6,490 59.0
Douglas DC-8-61 180 – 4A 10 09/66 8.000 Longa 10,640 96.0
Iljuschin IL-62 144 – 2T 13 09/67 9.200 Longa 7,823 71.0
Boeing 727-200 146 – 3T 08 12/67 5.550 Curta 9,538 86.0
Douglas DC-8-62 148 – 4A 09 04/67 7.200 Muito Longa 10,050 91.0
Douglas DC-8-63 184 – 4A 10 06/67 7.900 Longa 11,310 102.0
Douglas DC-9-30 97 – 2T 07 02/67 3.400 Curta 6,629 60.0
Boeing 737-100 96 – 2A 06 02/68 3.500 Curta 6,700 60,9
Douglas DC-9-40 108 – 2T 07 03/68 3.600 Curta 8,643 78.0
BAe Trident 2E 91 – 3T 06 04/68 4.500 Média 8,024 72.0
Boeing 737-200 104 – 2A 06 05/68 3.500 Curta 8,232 74.0
Bae 1-11 Series 500 “One Eleven” 96 – 2T 06 08/68 3.200 Curta 8,031 73.0
Fokker F-28 Mk1000 60 – 2T 04 04/69 1.900 Curta 4,902 44.0
Boeing 747.100 386 – 4A 19 01/70 17.200 Longa 55,900 508.0
Tupolev TU-134A 76 – 2T 06 04/70 4.000 Curta 3,643 33.0
Boeing 747.200 386 – 4A 19 03/71 16.500 Muito Longa 56,160 510.0
Sud-Est Caravelle 12 109 – 2T 06 03/71 3.600 Curta 6,968 63.0
BAe Trident 3B 126 – 3T 07 04/71 5.100 Curta 8,495 77.0
Douglas DC-10-10 270 – 3TA 15 08/71 10.800 Média 40,290 366.0
TriStar L-1011-100 262 – 3TA 13 04/72 10.200 Média 39,000 345,5
Boeing 727-200 Adv. 150 – 3T 08 07/72 5.400 Média 11,100 100,9
Douglas DC-10-30 260 – 3TA 15 11/72 10.800 Muito Longa 43,700 397,2
Tupolev TU-154A 144 – 3T 09 05/73 7.200 Média 9,484 86,2
Iljuschin IL-62M 178 – 4T 13 04/74 9.000 Longa 9,424 85,6
Airbus A-300 B2-200 262 – 2A 12 05/74 8.200 Curta 29,792 270.7
Airbus A-300 B4-200 262 – 2A 12 05/74 8.200 Média 31,250 284,0
Douglas DC-10-30ER 260 – 3TA 15 03/75 10.800 Muito Longa 49,250 447,7
Douglas DC-9-50 135 – 2A 08 08/75 3.900 Curta 11,500 104,5
Boeing 747-SP 278 – 4A 13 05/76 13.500 Muito Longa 55,000 500,0
Fokker F-28 Mk3000 60 – 2T 04 08/76 1.800 Curta 7,100 64.0
Fokker F-28 Mk4000 75 – 2T 04 11/76 2.400 Curta 8,524 77.0
TriStar L-1011-200 262 – 3TA 13 05/77 10.200 Longa 55,610 505.0
Tupolev TU-154B 154 – 3T 09 08/77 6.000 Curta 12,280 111.0
TriStar L-1011-500 240 – 3TA 11 05/79 10.500 Muito Longa 56,760 516.0
Douglas DC-9-81 142 – 2T 08 10/80 3.700 Curta 19,300 175,4
Iljuschin IL-86 288 – 4A 18 12/80 12.500 Média 38,150 346,8
Douglas DC-9-82 144 – 2T 08 08/81 3.700 Curta 20,250 184,0
BAe 146 100 – 4A 05 09/81 2.800 Curta 19,000 172,7
Airbus A-300 B4-200FF 262 – 2A 11 01/82 8.200 Média 43,500 395,4
Boeing 767-200 204 – 2A 10 09/82 6.200 Média 53,930 490,2
Boeing 757-200 186 – 2A 08 01/83 4.600 Média 42,000 381,8
Airbus A310-200 236 – 2A 10 03/83 5.200 Média 45,000 409,0
Boeing 747-300 374 – 4A 19 03/83 15.800 Muito Longa 99,720 906,5
Douglas MD-81 (**) 142 – 2T 08 03/84 3.700 Curta 22,490 204,4
Douglas MD-82 (**) 144 – 2T 08 03/84 3.700 Curta 22,790 207,1
Airbus A300-600 264 – 2A 12 04/84 8.250 Longa 57,000 518,1
Boeing 767-200ER 190 – 2A 10 06/84 6.300 Muito Longa 76,840 698,0
Boeing 737-300 128 – 2A 06 12/84 3.100 Curta 28,610 260,0
Tupolev TU-154M 154 – 3T 08 01/85 5.500 Curta 22,320 202,0
Douglas MD-83 142 – 2T 08 10/85 3.700 Média 29,440 267,0
Airbus A310-300 208 – 2A 10 12/85 5.700 Longa 65,780 598,0
ATR-42 46 – 2A 03 12/85 700 (Th) Curta 14,020 127.0
Boeing 767-300 226 – 2A 11 09/86 6.800 Longa 76,680 697,0
Airbus A320 150 – 2A 07 04/88 2.700 Média 34,270 311,0
Boeing 767-300ER 222 – 2A 11 07/88 6.800 Muito Longa 77,720 706,0
Douglas MD-87 107 – 2T 06 11/87 3.500 Média 28,700 260,0
Douglas MD-88 142 – 2T 07 01/88 3.700 Média 31,450 285,0
Fokker F-100 102 – 2T 05 04/88 2.500 Curta 25,470 231,0
Airbus A300-600R 266 – 2A 12 06/88 8.200 Longa 73,710 670,0
Boeing 737-400 146 – 2A 07 10/88 3.300 Curta 28,500 259,0
Boeing 747-400 416 – 4A 18 01/89 14.900 Muito Longa 131,000 1.190,0
ATR-72 48 – 02A 04 11/89 900 (Th) Curta 19,050 173.0
Boeing 737-500 108 – 2A 05 03/90 2.800 Média 26,000 236,3
Douglas MD-11 293 – 3TA 16 12/90 9.000 Muito Longa 110,200 1.001,0
Boeing 747-400D 514 – 4A 23 10/91 16.500 Curta 167,300 1.520.0
Avro RJ-85 (***) 100 – 4A 05 02/92 2.700 Curta 33,730 306,0
Avro RJ-100 122 – 4A 06 11/92 2.850 Curta 38,340 348,0
Avro RJ-70 82 – 4A 05 05/92 2.500 Curta 30,600 278,0
Canadair RJ 200 50 – 2T 04 11/92 1.250 Curta 19,540 177,0
Ilyushin IL-96-300 235 – 4A 13 02/93 9.500 Muito Longa 88,390 803.0
Airbus A340-200 248 – 4A 12 03/93 7.800 Muito Longa 105,900 962,0
Airbus A340-300 286 – 4A 13 05/93 8.400 Muito Longa 113,300 1.030,0
Airbus A330-300 295 – 2A 13 10/93 7.500 Longa 92,500 840,9
Airbus A321 186 – 2A 08 02/94 2.900 Média 56,860 516,0
Fokker F-70 79 – 2T 04 10/94 2.200 Curta s/dados s/d
Douglas MD-90 142 – 2T 07 02/95 3.400 Média 53,460 486,0
Tupolev TU-204-100 182 – 2A 08 04/95 5.400 Média 48,280 438.0
Boeing 777-200 305 – 2A 13 05/95 8.750 Longa 142,300 1,293.0
Airbus A319 126 – 2A 06 01/96 2.800 Média 41,880 380,0
Embraer ERJ-145 48 – 2T 04 11/96 1.200 Curta 17,270 157,0
Boeing 777-200ER 292 – 2A 13 02/97 8.300 Muito Longa 145,200 1,320.0
Boeing 737-700 128 – 2A 06 05/97 2.780 Média 44,080 400.0
Boeing 777-300 365 – 2A 16 06/98 9.700 Longa 179,900 1,635.0
Boeing 737-600 108 – 2A 05 06/98 2.550 Média 39,010 354.0
Boeing 737-800 150 – 2A 07 03/98 2.970 Média 52,000 472.0
Airbus A330-200 253 – 2A 12 05/98 7.100 Muito Longa 120,300 1,093.0
Fairchild Dornier 328 33 – 2T 03 06/99 620 (Th) Curta 11,530 104,0
Boeing 757-300 230 – 02A 11 08/99 4.700 Média 78,000 709,0
Tupolev TU-204-120 186 – 02A 08 11/98 4.800 Média 54,191 499.0
Embraer ERJ-135 37 – 2T 03 06/99 1.100 Curta 15,700 142.0
Boeing 717-200 106 – 2T 05 09/99 2.500 Curta 44,090 400.0
Boeing 767-400ER 248 – 2A 12 08/2000 7.400 Muito Longa 146,700 1,333.0
Canadair RJ 700 72 – 2T 04 09/2000 1.700 Curta 33,970 308.0
Boeing 737-900 177 – 02A 08 05/2001 3.200 Curta 69,940 635.0
Embraer ERJ-140 44 – 2T 03 07/2001 1.150 Curta 19,820 180.0
Tupolev TU-214 164 – 2A 08 10/2001 5.100 Longa 52,300 475.0
Boeing 747-400ER 424 – 4A 18 10/2002 14.600 Muito Longa 241,700 2,197.0
Airbus A340-500 308 – 2A 14 11/2002 8.800 Muito Longa 177,600 1,614.0
Airbus A340-600 372 – 2A 16 03/2003 9.900 Muito Longa 218,500 1,986.0
Canadair RJ 900 84 – 2T 04 04/2003 1.980 Curta 38,480 349.0
Airbus A318 107 – 2A 05 07/2003 2.600 Média 46,180 419.0
Airbus A319LR 92 – 2A 06 10/2003 2.830 Longa 52,620 478.0
Embraer E-170 76 – 2A 04 03/2004 1.700 Curta 36,400 330.0
Boeing 777-300ER 352 – 2A 16 04/2004 9.100 Muito Longa 242,400 2,203.0
Embraer E-175 82 – 2A 04 07/2005 1.800 Curta 38,000 345.0
Tupolev TU-204-300 144 – 2A 09 08/2005 4.300 Longa 45,000 409.0
Embraer E-190 98 – 2A 05 12/2005 2.200 Curta 44,000 400.0
Boeing 777-200LR 290 – 2A 13 02/2006 8.150 Muito Longa 199,000 1,809.0
Embraer E-195 108 – 2A 05 08/2006 2.300 Curta 47,000 427.0
Boeing 737.900LR 177 – 2A 08 04/2007 3.300 Média 79,100 719.0
Boeing 737.700LR 86 – 2A 06 05/2007 2.810 Longa 62,000 563.0
Antonov AN-148 75 – 2A 04 05/2007 1.900 Curta 25,000 227.0
Ilyushin IL-96-400 315 – 4A 15 05/2007 9.700 Longa 101,000 918.0
Airbus A380-800 555 – 4A 24 10/2007 16.000 Muito Longa 326,000 2.963.0
Canadair RJ 1000 96 – 2T 05 04/2010 2.200 Curta 52,000 472.0
Sukhoi SSJ 100-95 95 – 2A 05 04/2010 2.300 Curta 50,500 459.0
Boeing 787.8 Dreamliner 223 – 2A 11 12/2010 6.075 Muito Longa 175,300 1,593.0
Boeing 787.9 Dreamliner 290 – 2A 13 s/dados s/dados Muito Longa 218,100 1,982.0
Boeing 747-8 467 – 4A 24 03/2011 14.000 Muito Longa 317,500 2,885.3
Airbus A350-800 270 – 2A s/dados s/dados s/dados Muito Longa s/dados s/d
Airbus A350-900 314 – 2A s/dados s/dados s/dados Muito Longa s/dados s/d
Airbus A350-1000 350 – 2A s/dados s/dados s/dados Muito Longa s/dados s/d

FONTES: Banco de dados do Portal Brasil®, Frank Schoenstedt (Alemanha), BOEING, AIRBUS E EMBRAER.

(1) Consideradas as aeronaves em suas versões básicas no lançamento;
(Th) Turbo-hélice – os demais são aeronaves a jato.

Observações complementares:
(*) Na 2ª coluna (Passageiros e turbinas) primeiramente vem a informação do número de assentos, seguido do número de turbinas e sua localização (“T” na parte traseira da aeronave e “A” na asa da aeronave. “TA” = uma turbina atrás e outra em cada asa).
(**) O MD-81 e MD-82 são as mesmas aeronaves DC-9-81 e DC-9-82, apenas com modificações nos nomes, pois a fábrica efetuou estas alterações em toda sua linha de aeronaves (DC de Douglas Co. para MD, de McDonnell Douglas).
(***) O Avro RJ-85, lançado em Fevereiro de 1992 é o mesmo avião denominado de BAe 146 lançado em Setembro de 1981. Toda linha da BAe (British Aerospace), passou a ser chamada de Avro RJ, a partir de 1992.


Crédito/Fonte:

http://www.portalbrasil.net/aviacao_comparativo.htm

***************************

Se você é iniciante, ou se é veterano e quer se reciclar, abaixo uma série de video-tutoriais sobre navegação aérea para Flight Simulator. Lembre-se que as diferentes versão de simuladores de voo (especialmente o MSFS, o X-Plane e o FlightGear) são geralmente destinadas a simulação de voos reais, e não para jogos e brincadeiras.

Lembre-se também que esses tutoriais são exclusivos para simuladores de voo, e não devem ser usados para a aviação real. Para se tornar um piloto real, busque apoio e instrução no Aeroclube mais próximo da sua cidade.

******************************

Tutorial p/ voo on line c/ Flight Simulator – Cmte Siqueira – Vídeo 1 (proa direta)
http://www.youtube.com/watch?v=bIPAcw6Owno

Tutorial p/ voo on line c/ Flight Simulator – Cmte Siqueira – Vídeo nº 2 (órbitas – básico)
http://www.youtube.com/watch?v=qNTdHaCeTws

TUTORIAL PARA FLIGHT SIMULATOR – AULA #1
http://www.youtube.com/watch?v=YVvO-ZNi0EI

TUTORIAL PARA FLIGHT SIMULATOR – AULA #4
http://www.youtube.com/watch?v=AJ5VYcEMHcI

TUTORIAL PARA FLIGHT SIMULATOR – AULA #5
http://www.youtube.com/watch?v=puhBtzEmeu8

TUTORIAL PARA FLIGHT SIMULATOR – AULA #6
http://www.youtube.com/watch?v=5ur6M725o5g

TUTORIAL PARA FLIGHT SIMULATOR – TREINAMENTO ILS COMPLETO
http://www.youtube.com/watch?v=eVqhk2mxAvU

CARTAS AEREAS PARTE 1
http://www.youtube.com/watch?v=62an-knUXPQ

Interpretação de cartas aéreas parte 1
http://www.youtube.com/watch?v=OK5rAESdWTY

Tutorial Interpretando Cartas de Voo
http://www.youtube.com/watch?v=pFYP7ovCRP8

Tutorial para interceptar o VOR ou NDB C RWY20 SBRJ
http://www.youtube.com/watch?v=TEQlE6sJF28

Learning to Fly – Video Tutorial
https://fsbrasil.wordpress.com/2010/02/20/learning-to-fly/

Tutorial: METAR
https://fsbrasil.wordpress.com/2010/02/05/tutorial-metar/

REDEMET – Tudo sobre meteorologia!
https://fsbrasil.wordpress.com/2008/09/10/redemet/

Aeronaves + Consumos
https://fsbrasil.wordpress.com/2009/12/31/aeronaves-consumos/

Checklist for Download
https://fsbrasil.wordpress.com/2009/01/09/checklists/

Estrutura do Espaço Aéreo
https://fsbrasil.wordpress.com/2008/02/27/espaco-aereo/

Voo ETOPS
https://fsbrasil.wordpress.com/2008/02/27/voo-etops/

Tutorial Aerovias
https://fsbrasil.wordpress.com/2008/02/27/aerovias/

Arco DME
https://fsbrasil.wordpress.com/2008/02/27/arco-dme/

Entenda o que é e como usar (QNH/QNE/QFE)
https://fsbrasil.wordpress.com/2008/02/24/qnh-qne-qfe/

Tutoriais de voo para Flight Simulator
https://fsbrasil.wordpress.com/2008/01/27/tutorial-fs/

Planejamento de vôo e cálculos básicos de navegação!
https://fsbrasil.wordpress.com/2007/11/13/navegacao/

Manual para controladores e pilotos iniciantes
https://fsbrasil.wordpress.com/2007/10/24/manual-para-controladores-e-pilotos-iniciantes/

Tabela TA x TL (Altitude de Transição x Nível de Transição)
https://fsbrasil.wordpress.com/2007/07/25/tabela-ta-x-tl/

Critérios gerais para voo visual no Brasil (VFR)
https://fsbrasil.wordpress.com/2007/03/22/vfr/

Tabelas e regras de níveis de voo do mundo
https://fsbrasil.wordpress.com/2006/12/12/niveis-voo-mundo/

Manual de Fraseologia Aeronáutica
https://fsbrasil.wordpress.com/2006/09/03/fraseologia/

Curso de Vôo Por Instrumentos Em Simuladores
https://fsbrasil.wordpress.com/2006/01/29/tut_ifr/

Tutorial para conectar e voar pela primeira vez na IVAO
https://fsbrasil.wordpress.com/2005/06/18/tutorial-para-conectar-e-voar-pela-primeira-vez-na-ivao/

Tutorial – Como conectar no TeamSpeak (ilustrado)
https://fsbrasil.wordpress.com/2005/05/27/tutorial_teamspeak/

Tutorial: Helicopteros
https://fsbrasil.wordpress.com/2005/03/02/helicopteros/

Tutorial Aeroportos
https://fsbrasil.wordpress.com/2005/01/31/aeroporto/

Outros Tutoriais:
https://fsbrasil.wordpress.com/category/tutorialchecklist/

Video Tutorial – iFly B737NG
– B737-600
– B737-700
– B737 -800
– B737-900
– B737-BBJ
– B737-BBJ2
– B737-BBJ3

www.iflysimsoft.com

Tutorial Boeing B757-200, B757-300, B757-F
by Captain Sim (CS) – http://www.captainsim.com/
FS2004/FSX

| Português | Español | Français | Italiano | Deutsch | Nederlandse | Arabic |

*************
B737-200 TinMouse – Auto Flight Tutorial

Aircraft Review (AVSIM)
Paintkit & Model: AVSIM

PDF Download (english version): | FSBrasil |

Video-Tutorial:

*************

B737-200 Advanced projects
AUTO FLIGHT

Our 737-200 provides three systems for guidance and automatic flight: Flight Director, Autopilot, and the Approach Progress Display.


Flight Director

A flight director gives pilots visual cues to follow by hand-flying the airplane to reach a desired roll and pitch attitude. The flight director components are the flight director indicator (FDI) and a control panel.

It is very important to keep in mind that this model of Flight Director functions completely separate from the autopilot. The flight director can be set in one mode and the autopilot in a different mode. This is a common source of confusion with flight simulator pilots when introduced to this system.


Flight Director Indicator

Figure 1 shows our FDI, a combination of a typical attitude indicator, a fixed aircraft symbol (orange triangle), pitch and bank command bars (yellow inverted ‘V’), glide slope indicator (white triangle), a rising runway symbol, and a slip indicator.

Figure 1 - Flight Director Indicator

Figure 1 - Flight Director Indicator

To fly the aircraft with the command bars armed, the pilot changes the flight director to the desired mode, then hand flies the airplane until the top of the orange airplane symbol touches the bottom of the pitch and bank command bars. The command bars move up for a climb or down for descent, and roll left or right to provide lateral guidance. They cue for standard-rate turns to enable the pilot to reach and fly a selected heading or track. The bars also show pitch commands allowing the pilot to capture and fly an ILS glide slope, a preselected pitch attitude, or maintain a selected barometric altitude. When not using the bars, the pilot can move them out of view by switching the flight director off.

The glide slope indicator and localizer deviation indicator work as in any other instrument landing system.

The Rising Runway comes into view when a localizer frequency is set on the radio. It will then indicate deviation from the localizer. When descending through 200 feet AGL, the R ising Runway will start to rise and will meet the orange airplane symbol when touching down. The Rising Runway scale is divided into 50 foot increments.


Control Panel

The flight director control panel provides the input information required for the FDI. Figure 2 shows the flight director control panel. It consists of three components: Mode Selector Switch (MODE SEL), Altitude Hold (ALT HOLD) Switch, and the Pitch Command (PITCH CMD) Control.

Rotating the MODE SEL switch selects flight director computer reference signals provided to the command bars.

Figure 2 - Flight Director Control Panel

Figure 2 - Flight Director Control Panel

The MODE SEL has the following modes:

1. GA (Go Around): Used for when executing a Go Around. The command bars provide commands for wings level and a pitch attitude of 14 degrees until the Mode Selector is changed to another position. GA mode can also be selected by clicking the “GA” icon, but you must be in either Auto Approach or Manual Glide slope mode.

2. OFF: Removes or tucks away the command bars in the FDI.

3. HDG: The command bars provide commands to fly to and maintain selected heading on the HSI’s heading bug.

4. VOR/LOC: The command bars provide commands to maintain a VOR radial or localizer course selected on the HSI.

5. AUTO APP: The command bars provide commands to maintain a localizer and glideslope. Until the localizer is captured, you will remain in HDG mode. Glide slope will be automatically captured when the glide slope beam is intercepted.

6. MAN G/S: Manual Glideslope forces capture of the localizer and glideslope even if you are not on the beam. Use this mode if above the GS and capture not likely, but not more than ½ dot above.

7. BB: Back course mode. Will cue for tracking an ILS back beam.

The Altitude Hold (ALT HOLD) switch sets the command bars to provide commands to achieve the existing altitude shown in the altitude indicator at the time the switch is used. You must have a roll mode engaged before using. When on, the ALT HOLD switch is electrically locked. It will automatically shut off when the Mode Selector is turned to OFF or on glideslope capture.

The PITCH CMD Control selects fixed pitch angle for climb or descent. It will be inoperable (INOP) if ALT HOLD is ON, if glide slope is captured, or during Go Around. Left clicking will adjust pitch in tenths of a degree, while right clicking adjusts in whole degrees.


Autopilot

The Sperry SP-77 autopilot allows control of roll and pitch via two separate channels; they can be controlled simultaneously or separately using the paddles labeled AIL and ELEV. It is important to note the autopilot acts completely independent from the flight director. The autopilot can be used in the following modes:

  • Manual
  • VOR/LOC
  • Auto Approach
  • Manual Glide Slope

In conjunction with these modes, the following submodes are available:

  • Control Wheel Steering
  • Heading Off
  • Heading Hold
  • Turbulence
  • Altitude Hold

Panel

Figure 3 - Autopilot Panel

Figure 3 - Autopilot Panel

1. Autopilot System Select Switch

The 737-200 has three hydraulic systems: A, B, and Standby. This switch selects the hydraulic system the autopilot and yaw damper uses. The ELEV channel only works when system B is selected. The AIL channel works with either mode.

2. Autopilot Mode Selector

MAN (Manual Mode) – This mode activates Control Wheel Steering (CWS) which is used to maneuver the airplane with either or both channels engaged. CWS basically functions as an auto trim.

When in MAN mode:

  • ALT HOLD or TURB is selectable
  • HDG SEL or HDG OFF is selectable.

VOR LOC (VOR/LOC Mode) – Used to automatically intercept the selected radio course; either a VOR radial, or the localizer part of an instrument landing system:

  • HDG SEL or CWS is used to achieve the intercept heading, but CWS provides the pilot with more flexibility to compensate for simulator’s non-optimal VOR radial intercept routines
  • Use the heading and course bugs in the Heading Selector Indicator to select heading and course
  • You can use roll commands can to manually capture the VOR radial or ILS localizer, if you’re not using HDG SEL
  • Crosswind compensation occurs after being ON COURSE
  • ALT HOLD or TURB is selectable (TURB in VOR only).

AUTO APP (Auto Approach Mode) – Used to automatically capture both ILS Localizer and glide slope:

  • Use HDG SEL or CWS to achieve the intercept heading
  • LOC CAPTURE is the same as VOR/LOC mode
  • LOC and G/S are armed when:
    * ILS frequency is tuned;
    * AUTO APP is selected.
  • G/S is captured at 1/3 dot
  • ALT HOLD trips OFF at G/S capture
  • Autopilot reverts to MAN if TURB is selected
  • AUTO APP is not selectable unless ILS frequency is selected.

MAN G/S (Manual Glide Slope Mode) – Used to capture G/S from above or to re-capture after autopilot disengagement.

  • When selected, the airplane pitches down for 10 seconds (700 ft/min) then tracks G/S
  • GLIDE SLOPE light illuminates green immediately after selecting MAN G/S
  • Operates the same as AUTO APP after G/S capture

3. Heading Switch

HDG OFF – Autopilot maintains any bank attitude within limits.

  • Selectable in MANUAL mode only.

HDG SEL – Establishes preselected heading mode.

  • Maintains the heading selected in the Heading Selector Indicator.

HEADING HOLD (center position)

  • Bank angle < 5 degrees – When the force is released, the airplane rolls wings level
  • Bank angle > 5 degrees – When the force is released, the airplane maintains bank attitude.

4. Autopilot Aileron (ROLL) Engage Switch

The aileron (roll) channel may be operated independently of the pitch channel in the MAN or VOR LOC modes of operation.

  • The Mode Selector must be in MAN
  • Will not engage if force is being applied to the control wheel.

5. Autopilot Pitch Mode Selector

TURB (Turbulence) – Decreases pitch attitude and rate gains.

  • Bank angle is limited to 8 degrees in VOR LOC mode
  • CWS, HDG SEL, HDG HOLD, and VOR modes are available
  • Deselected by manually positioning switch to OFF.

OFF – Pitch Attitude hold or glide slope engaged.

  • Spring-loaded to OFF at glide slope engagement
  • Spring-loaded to OFF if force greater than high detent level is exerted.

ALT HOLD (Altitude Hold) – Pitch reference is to pressure altitude.

6. Autopilot Elevator (PITCH) Engage Switch

The elevator (pitch) channel may be operated independently of the roll channel in the MAN mode only. CWS will auto trim the airplane to keep the selected pitch.


Indicators

Figure 4 - Autopilot Disengage Light

Figure 4 - Autopilot Disengage Light

Figure 5 - Stabilizer Out Of Trim Light (amber)

Figure 5 - Stabilizer Out Of Trim Light (amber)

The autopilot uses the Disengage Light and Stabilizer Out of Trim Light indicator to alert the pilot of unusual circumstances.

1. Autopilot Disengaged Light (red)

This is the autopilot disengaged warning light, and it will come on each time the autopilot is disconnected. Just push the light, re-engage the autopilot, or press the Z key or programmed joystick button a second time to cancel the warning.

2. Stabilizer Out Of Trim Light (amber)

Functions only with the Autopilot Elevator Engage Switch ENGAGED.

ILLUMINATED – The stabilizer is out-of-trim for the condition required by the autopilot. It’s normal for it to come on when a pitch mode is first engage or during heavy autopilot trimming.
Approach Progress Display (APD)

Figure 6 - APD-1

Figure 6 - APD-1

Figure 8 - APD-3

Figure 8 - APD-3

Figure 7 - APD-2

Figure 7 - APD-2

On the main panel just above the altimeter is the APD, or Approach Progress Display. These lights display the status of your approach. The APD is divided into two columns – the left for the flight director and the right for the autopilot. Amber means that a mode is armed, and green means it is captured. In the above examples, figure 6 shows the flight director has the VOR/LOC armed, and the autopilot has the VOR/LOC and GS armed. Figure 7 shows that both the flight director and autopilot have captured VOR/LOC, but GS is still armed. Figure 8 shows both flight director and autopilot have VOR/LOC and GS armed. It’s important that these two columns of lights match each other, although it is normal for the flight director and autopilot to capture at slightly different times.

The APD lights can be tested by pushing on either column. The left side tests the amber lights, and the right side tests the green.

| Português | Español | Français | Italiano | Deutsch | Nederlandse | Arabic |


Full Authority Digital Electronic Control (FADEC)
Embraer ERJ Series (135, 145, Legacy) – Feelthere/Wilco

FADEC Tutorial Download in PDF format:
| Feelthere | FSBrasil |

Complete Tutorial:
https://fsbrasil.wordpress.com/2009/01/07/tutorial-erj145/


NOT FOR REAL WORLD USE!

********************************

Each engine is controlled by two FADECs which are designated as FADEC A and B. Each FADEC receives signals from the Control Pedestal and from the Powerplant Control Panel and sends a signal to the FPMU torque motor which meters the fuel flow to the engines to reach the fan spool speed calculated by the FADEC.

ENGINE START
Engine start is initiated by turning the Start/Stop button to the START position (remember right clicking on the cover to open that allowing access to the knob). The FADEC is responsible for the automatic engine startup and completing the startup cycle.

ENGINE SHUTDOWN
Engine shutdown is initiated by using the Engine Start/Stop knob with the Thrust Lever positioned at IDLE (users with throttle control, make sure the throttle is calibrated otherwise hit F1 to bring the engines to complete idle)

THRUST MANAGEMENT

The Engine Thrust Rating Mode Selection

FADEC - Thrust Management - Engine Thrust Rating Mode Selection

FADEC - Thrust Management - Engine Thrust Rating Mode Selection

The thrust management logic includes five thrust rating modes:
– T/O-1: Maximum Takeoff
– CON: Maximum Continuos
– CLB: Maximum Climb
– CRZ: Maximum Cruise (the pilot is always responsible of managing the cruise setting as the CRZ mode can allow the plane to overspeed)

Alternate takeoff mode is selected through Takeoff Data Setting procedure. If the Thrust Levers are positioned at THRUST SET (F4 or move your throttle to it’s maximum position), FADEC will command the maximum N1 associated with the selected mode.

This function is provided in order to enable the pilot to input reference data into the FADEC prior to takeoff. This data will be used to calculate N1TARGET during takeoff.

The following data has to be input:
– Takeoff mode: T/O-1 or ALT T/O 1
– Reference takeoff temperature: which corresponds to SAT
– Reference takeoff Anti-Ice: which will allow the FADEC to consider this condition to calculate N1TARGET

The takeoff data setting is performed by the Takeoff Data Setting controls (SET and STORE) on the overhead.

The procedure is the following (engine must be running):
– After pressing the STORE button on the MFD an arrow will point to T/O MOED line. By using the SET control the takeoff mode can be changed to ALT T/O 1 mode
– By pressing the STORE button again the arrow will point to the REF TO TEMP line which can be adjusted by the SET knob.
– By the third pressing of the STORE button will allow the pilot to select the REF-A-ICE line and adjust it by using the SET knob.
– The forth pressing of the STORE will allow the FADEC to calculate the N1TARGET value.

FADEC - Takeoff Data Setting (ERJ - EMBRAER)

FADEC - Takeoff Data Setting

Automatic Takeoff Thrust Control System (ATTCS):
During a takeoff if an engine fails the ATTCS automatically resets thrust on the remaining engine from alternate takeoff thrust to maximum takeoff thrust.

********************************

NOT FOR REAL WORLD USE!

ERJ by Feelthere/Wilco

ERJ by Feelthere/Wilco

 

Next Page »